FY’03 Progress Report:
Strategic Environmental Research
and Development Program

Project Number: UX-1200

Bayesian Approach to UXO Site Characterization with
Incorporation of Geophysical Information

Sean A. McKenna, Hirotaka Saito
Geohydrology Department
Sandia National Laboratories
PO Box 5800 MS 0735
Albuquerque, NM 87185-0735

December 19, 2003



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
19 DEC 2003 2. REPORT TYPE 00-00-2003 to 00-00-2003
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Bayesian Approach to UXO Site Characterization with I ncor poration of
Geophysical Information

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Sandia National L abor atories,Geohydrology Department,PO Box 5800 REPORT NUMBER
M S 0735,Albuquer que,NM ,87185-0735

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 74
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



Abstract

UXO site characterization approaches are devel oped to assist decision makers in determining
where additional characterization efforts need to be expended and where additional
characterization is not effective. These decisions are based on limited transect data and require
that without 100 percent site characterization there is afinite probability of leaving some UXO
behind. One theoretical limitation of geostatistical approachesto estimation is the assumption
that sample data exist in an unbounded domain. Contiguous transect data, because of their close
proximity to each other violate this assumption and can produce unwanted resultsin the
estimates. The extent of these unwanted results are checked for a variety of transect sample
designs on three simulated sites and the results show that the effects of the finite domain
associated with transect data are negligible and traditional geostatistical estimation techniques
can be applied.

Four example calculations are used here to demonstrate aspects of this spatial -statistics based
approach to UXO site characterization. The first example demonstrates the ability of the spatial
estimation techniques to estimate different attributes that might be of interest in asite
characterization activity: the total number of anomalies, the number of anomalies of interest and
the probability of at least one anomaly of interest. Prior to making the estimates, a cross-
validation process is used to check the applicability of the variogram and kriging model for the
specific application. These cross-validation results provide excellent predictions of the results of
the final estimations. The second example demonstrates the ability of probability mapping to
define the edge of a UXO target from alimited number of parallel transects representing three
percent of the entire site. The third example extends the results of the first example by adding
prior information in the form of discretizing the site into different strata each of which isthought
to have undergone a similar site history. This stratified approach is perhaps the simplest way to
incorporate prior information into the site characterization approach and has not previously been
applied to UXO sites. Incorporation of the strata into the estimation procedure allows for
extending the estimates made in the first example further away from the limited sample data to
cover all portions of the site under the assumption that the mean values assigned to the strata are
representative of each stratum al the way across the site. Results show that the estimation
results of the number of anomalies, anomalies of interest and probability of at least one anomaly
of interest across the site are consistent with the estimates made on smaller portions of the sitein
the first example. The fourth example demonstrates two methods for locating additional samples
in a second phase of sampling. The two approaches are meandering pathsin the area of highest
uncertainty to better define the edge of the target areas and infill sampling to better characterize
the entire site. Decision results between the two approaches are nearly identical even through the
latter approach uses almost twice as many samples. However, both sets of results are not
significantly different from the decision results made with just the original set of samples.
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Introduction

This report documents work done in the third year of the UX-1200 SERDP project investigating
the use of spatial statistical, or geostatistical, techniques to accomplish more efficient UXO site
characterization. Thiswork isamed at providing approaches to decreasing the amount of alarge
site that must undergo detailed geophysical surveys by extrapolating information from alimited
amount, typically less than 10 percent of the site, of detailed surveying. The extrapolation of this
information must also include some indication of the confidence with which that extrapolation
can be made. Approachesto detailed survey areareduction done through geostatistical
estimation are demonstrated in this report using four different example applications. These
example applications were chosen to demonstrate a broad range of calculations that can be made
in support of site characterization decisions. Results of these example estimations are assessed
through comparison to additional data that were held back from the initial estimations.

The techniques and the example applications presented in this report build on previous work
done for this project. The focus of the work done in 2001 was to define an approach to making
site characterization decisions based on mapping the probability of at least one anomaly of
interest with geostatistical technigques and coupling that map with a specified design reliability to
make characterization decisions. Prior information was incorporated into the mapping using
both cokriging and kriging with alocally varying mean. Example applications were done on
simulated data sets, the N-10 target area at the Pueblo of Lagunain New Mexico and the
Stronghold site in South Dakota. Work in 2002 focused on the effect of the ROC curve on the
final geostatistical estimations. Thiswork used both kriging with alocally varying mean and
collocated cokriging to integrate prior information. Example calcul ations were done using
simulated sites and a surveyed target area from the Pueblo of Isletain New Mexico.

The techniques presented in this report are general in the sense that they can be applied to
estimation of any measured attribute of interest. In the characterization of UXO sites, the
measured attribute of interest may be the total number of anomalies, the number of “anomalies of
interest” or the probability of having at least one anomaly of interest at any unsampled location
(Figure 1). Ananomaly of interest is defined here as some geophysical anomaly that has been
identified as worthy of additional investigation. These anomalies may be identified as being
above some threshold geophysical signal (e.g., a magnetic gradient equal to or greater than 10
nT/m) or possessing some degree of fit to a physical or statistical model of an ordnance item
believed to be at the site (e.g., the measure of fitness computed through inverse modeling with
comparison to the true UXO shape). Research on defining these threshold or fitness measures
for UXO discrimination is outside the scope of thiswork, but examples of such efforts are
available (e.g., Tantum and Collins, 2001; Paison, et al., 2002).

The samples collected at UX O sites are done along transects that have a fixed width, or footprint,
and may be of varying length in asingle direction along a straight transect or along a meandering
path. For the analyses presented here, the transect is broken up into equal area cells, either
square or rectangular, where at least two sides of each cell are equal in length to the transect
footprint. Within each of these cells, the different attributes can be measured and a value
assigned to the cell. Unlike nearest neighbor approaches (e.g., Byers and Raftery, 1997) that
utilize the spatial relationships between the locations of the individual objects, the geostatistical



approach presented here aggregates or summarizes all sub-cell information to the size of the
sample cell.

Figure 1 shows a conceptual model of this sampling and aggregation approach. The sampling
transect can be represented as a series of contiguous square or rectangular cellsarranged in a
line. The geophysical anomaliesin the area of the transect are shown as colored circlesin Figure
1. Thecolor of each circle represents the strength of the geophysical signal or the fitness of the
anomaly with respect to its similarity to an ordnance model. Here cooler colors represent lower
signa strength / fitness and warmer colors represent higher values. The same sample cells are
shown in the middle of Figure 1 where the number in each cell represents the total number of
anomalies within that cell. The sample cells are shown again in the bottom of Figure 1 where the
number within each cell now refers to the number of anomalies of interest found within each

cell. InFigure 1, anomalies of interest are those colored red at the top of the figure. The
information aggregated to the cell size is assigned spatial coordinates equal to those of the center
of the cell. These spatially referenced data can now be used in the geostatistical analyses
conducted to characterize the site.

There are three main areas of focus for the work done in 2003: 1) The controlled testing of the
site characterization approaches devel oped in the project on simulated data sets created by
Mitretek; 2) demonstration of the flexibility of the site characterization approach to create spatial
estimates of different attributes that might be measured on a site; and 3) the use of probability
mapping to define the edges of targets and to locate additional sampling transects. Thefirst area
of focusis still ongoing and will be documented in a separate report. The other two areas of
focus are presented here through the use of four example calculations using a smulated site and
data collected at the Pueblo of Laguna N-11 sitein New Mexico. The focus of these calculations
isto provide awide range of examples in which geostatistical methods can be applied to UXO
site characterization problems. In addition to these example applications, atheoretical limitation
of the basic geostatistical estimation algorithm, kriging, caused by redundant data as collected
along transectsisinvestigated. Compared to work of the past two years, more emphasisis
placed on target edge delineation and locating second-phase sampl e transects and less emphasis
is placed on techniques for integration of prior information, although a very smple and
previously untested approach for prior information integration is examined.
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Figure 1. Conceptualization of the transect sampling and different approaches to the
aggregation of information at the sample cell scale.



Geostatistics

Geodstatisticsis the study of spatially correlated data as well as a set of tools developed to
quantify the spatial variability of sample data and adaptations to regression theory to alow
information on spatial variability to be used in estimating values at unsampled locations based on
afinite number of existing sample data. Originally developed for ore reserve estimation in the
mining industry, geostatistical technigues have become widely accepted and deployed
throughout the earth and environmental sciences. Details on the theory and application of
geostatistics to awide variety of problems can be found in: Deutsch and Journel (1989)
Goovaerts (1997) Isaaks and Srivastava (1989) Journel and Huijbregts (1978) and Olea (1999).

Variogram

The fundamental building block of a geostatistical anaysisis the quantification of the variability
of the sample data as a function of the average distance between any two data points. This
distance to variability relationship is captured by the variogram, or more formally, the semi-
variogram. The variogram has been used for description of spatial patterns (Western and
Bldlschl, 1999), variance mapping (Rouhani, 1985), and generation of realizations of spatial
processes (stochastic ssmulation) (McKenna, 1998).

In practice the experimental variogram is computed as one-half the average squared difference
between the components of data pairs:

O 1N ,
g(h) T 2N(M) %[Z(ui)' z(u; +h)] 1

where N(h) is the number of pairs of datalocations avector h apart. The result of applying
equation 1 to adata set is a set of discrete points that define g as afunction of the separation
distance, h, or g(h). Multivariate geostatistics, which is an extension of univariate geostatistics,
allows for incorporation of secondary variables into the variogram cal culation and modeling, and
the cross-semivariogram is usually required for further analysis (e.g., cokriging). The cross-
semivariogram is a measure of joint variation of two attributes z and z, and the experimental
Cross semivariogram is computed as:

Ngh)

0,0 = 5y @20+ 20, +MAZ(u,)- 2w, +h) @

The experimental (direct- or cross-) semivariograms are used to describe spatia patterns of
attributes, but it israrely afinal goal.

While the discrete points of the variogram cal culated with a single or with multiple variables,
define the semi-variance of the data as a function of separation distance, they alone cannot be
used for spatial estimation in kriging algorithms. Spatial estimation requires that the variogram
be defined at all separation distances. Therefore a continuous model of the spatial variability is
fit to the points of the experimental variogram. Automatic model fitting algorithms exist (e.g.,
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Wingle et al., 1999); however, most practitioners rely upon fitting a variogram model to the
points of the experimental variogram by hand.

The choice of variogram model is, in practice, limited to a small number of analytical
expressions. A constraint on the function used to model the variogram is that it must produce a
positive-definite covariance matrix in the system of kriging equations. A positive definite
covariance matrix ensures that there is a unique solution to the kriging equations and that the
solution will produce non-negative kriging variance.

The three most commonly used variogram models are the spherical, exponential and Gaussian
models. Each of these modelsis defined by two parameters: the sill, C, and the range, a.
Theoretically, the sill is equal to the variance of the entire data set and represents the amount of
variability between any two points that are uncorrelated. Alternative notation for the sill isthe
covariance of the data at h=0, C(0). The range is the separation distance beyond which the data
are no longer positively correlated.

The spherical model is:

?2h) = C><§L5D-05(;——u for h<a
eagy

2Ah)=C for h3a

The Exponential model is:

3y
a

2Ah) = C>a91 e

O C

The Gaussian modd! is;

ae(gh) ou
g a? zu

2h) =

('D:('D) > (D~
O

Examples of al three variogram models with arange of 100 and a sill of 1.0 are compared in
Figure 2. The spherical model reachesthe sill value at a distance equal to therange. The
exponential and Gaussian models reach 95 percent of the sill value at a distance equal to the
range and then asymptotically approach the full value of the sill. Typically, when referring to the
exponential and Gaussian models, the distance at which the model reaches 95 percent of the sill
isreferred to as the “practical range”’ of the model. The Gaussian model appliesto data that
vary smoothly at short separation distances. The exponential model appliesto data that exhibit
stronger variability with increasing separation distance.

11
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Figure 2. Three different variogram models with the same parameters. nugget =0.0, sill = 1.0
and range = 100.0.

Figure 3 shows an example of an experimental variogram with a spherical model fitted. Often
the spatial correlation varies with direction, and such a case requires calculation of variogramsin
different directions and fitting of anisotropic (direction-dependent) models.

The nugget is athird parameter often used to define a variogram model. The nugget is anon-
zero value of glh) when h = 0. InFigure 2, all variogram models intercept the Y -axis at g(0) =
0.0. In many cases, there will be some level of variability at zero separation distance. This
variability may be due to repeatability issues with the measurements and/or some level of spatial
variability occurring at a scale that is smaller than the minimum sample spacing. The value of the
nugget ranges between 0.0 and the value of the sill. If the nugget is equal to the sill value, then
thereis no spatial correlation in the data and traditional statistical approaches, those that do not
account for spatial correlation, can be applied.

Direct Semivariogram

T T 1
[ 500. 1004, 1500. 2000. 2500,

Diztancs

Figure 3: An example of experimental direct semivariogram of primary data with a spherical
model fitted.
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Kriging

In general, kriging is the process of using the information on spatial correlation contained in the
variogram to make estimates of the sampled attribute at unsampled locations. Krigingisa
“BLUE” process meaning that the kriging equations are formulated to provide the Best Linear
Unbiased Estimate of a property at an unsampled location. Specificaly, “best” refersto the
kriging estimates having a minimum variance about the unknown true value at each unsampled
location and “ubiased” meaning that the kriging estimate is centered on the unknown true value
at the unsampled location. Solution of the kriging equations at any specific location may
produce an estimate with alarger variance or some bias, but across all estimates, the minimum
variance and unbiasedness properties hold true.

There are anumber of variations on the kriging estimator and how it is applied to different
problems. Those variants that are most applicable to UXO problems are discussed briefly below.

Ordinary Kriging
Consider the problem of estimating the value of a continuous attribute z (e.g. UXO intensity) at
an unsampled location u, where u is avector of spatial coordinates. The information available
consists of measurements of z at n locations u,, Z(Uy), a = 1,2, ..., n, that may have been obtained
on aset of sample transects. Krigingisaform of generalized least square regression. All
univariate kriging estimates are variants of the general linear regression estimate z (u) defined
as.

n(u)

Z (u)- mu) = é Lo, (W[Z(u,,) - m(u,,)] ()

a,=1

wherel ,1(u) isthe weight assigned to the datum z(u,1) and m(u) is the trend component of the
gpatialy varying attribute. In practice only the observations closest to u being estimated are
retained, that is the n(u) data within a given neighborhood or window W(u) centered on u. If
thereis no trend in the data across the site, mis no longer a function of the spatial location u but
is now the global mean of the data set, then Equation 3 defines the ssmple kriging, SK, estimator.
In most practical applications of kriging, SK has proven to be overly restrictive and ordinary
kriging is the preferred choice.

The most common kriging estimator is ordinary kriging (OK), which estimates the unsampled
value z(u) as alinear combination of neighboring observations without enforcing a global mean
onto the estimate:

n(u)
Zoy (U) = ésl o (u)z(u,,) (4)

a,=1

OK ng ghts| , are determined so as to minimize the error or estimation variance s*(u) =
Var{Z (u)-Z(u)} under the constraint of unbiasedness of the estimate (4). These weights are
obtained by solving a system of linear equations, which is known as the “ ordinary kriging
system”:
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3 n(u)

J:é. I, (u)g(u, - u,)- mu)=g(u, - u) a =1..,n(u)

g (6)
! a l b (u=1

b=1

The unbiasedness of the OK estimator is ensured by constraining the weights to sum to one,
which requires the definition of the Lagrange parameter n{u) within the system of equations.
The addition of the Lagrange parameter can be thought of as the addition of another unknown to
the system to balance the additional equation added to the system to ensure unbiased estimates.
The only information required by the system are the variogram values for different lags, and
these are readily derived from the variogram model fit to experimental values.

Indicator Kriging

In the earth and environmental sciences, problems often arise where it is not necessary to
estimate the value of an attribute directly at an unsampled location but only to estimate whether
that value is above or below some threshold level. For example, in a soil contamination problem
it may only be necessary to estimate whether or not the contaminant concentration at an
unsampled location exceeds, or does not exceed, the regulatory threshold. Similarly inaUXO
site characterization, the investigation team may only be interested in knowing if thereis at least
one UXO in an unsampled portion of the site. These types of binary, yes or no, variables are
referred to as indicators and indicator kriging is the application of akriging algorithm to these
indicator data

Indicator data are determined through an indicator transform of the original, continuously
defined, sample data. The resulting indicator datum, i(u,zy) is determined as:

if z£z
if z>z

. 1 .
.2) =1 ™

where z is a threshold value against which each sample value is compared. The indicator
transform as defined above is consistent with the definition of the cumulative probability
distribution function for a discrete variable (e.g., Conover, 1980). However, in many
environmental applications, the inverse of the indicator transform is of more interest. This
inverse transformation is defined as:

S

i(u,z,) =i

1 if z3z
0 if z<z

(8)

—_—

Thisinverse statement of the indicator transform places emphasis on those values that exceed the
threshold value z. Christakos and Hristopulos (1996) provide discussion of the utility of the
indicator transform shown in 8 for characterizing the spatial distribution of a contaminant.
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Datathat have been indicator transformed can be directly interpreted as the probability of a
certain condition being true at location u. At a sample location where the value of the sampled
attribute is known and can be compared directly to the threshold value, z, this probability can
only be 0 or 1. In order to determine the probability of the condition being true at any unsampled
location, the observation z(u,;) can be replaced by itsindicator transformi(ua1;z) in the smple
or ordinary kriging systems. Thisrequires that the variogram also be calculated using the
indicator transformed data. Kriging with this type of indicator data that define probabilitiesis
known as probability indicator kriging, PIK, and the resulting estimates are a map of the
condition being true at any location.

Finite Domain Kriging
One of the inherent assumptions in the development of the kriging equations is that the domain
in which the kriging estimates are made is essentialy infinite. This assumption stems from the
use of arandom function model as the basis for the kriging equations. One of the advantages of
kriging as an estimator is that it not only accounts for the distance between all existing data
points used in the estimation and the location being estimated, but that it also accounts for
clustering of the existing datain an estimation. The covariances from each existing datum and
the point being estimated are contained in a vector on the right hand side of the kriging equation
(Equation 6). The further the distance between an existing datum and the location being
estimated, the smaller the covariance between these points as defined by the complement of the
variogram. The left hand side of the kriging equations contains a matrix with the spatial
covariances between all existing data points. When this matrix isinverted during solution for the
values of the kriging weights, values that are close together and have high spatial covariance are
inverted to provide alower overall weight to these points. This function of the left hand side of
the kriging equations serves to filter out redundant information caused by data clustering.

Data collected in close proximity, such as along alinear transect, provide redundant information
due the fact that the data are close together and spatially correlated. The kriging equations work
to filter this redundancy by giving data at the far ends of the transect larger weights than those in
the center of the transect. These data at the far end of the transect are seen as being “less
redundant” and are therefore more heavily weighted. However, these data are also further from
the estimation point and provide less direct information on the point being estimated. Therefore,
the kriging equations provide a counter-intuitive set of results for estimations made using
transect data.

The problem of kriging with transect data, or more generaly, “strings of data” has been
examined previously in two papers by Deutsch (1993 and 1994) where attention was focused on
the application of kriging using data collected along vertical boreholes in subsurface
investigations. The solution to the kriging weights problem developed by Deutsch (1994) is
briefly outlined here:

The solution to the problem of kriging with a string of data (Deutsch 1994) is to replace the

correlation function, r (h), used to populate the covariance matrix on the left-hand side of the
kriging equations with a redundancy measure calculated as:

Py (U= W) =1 (u-u) +[F (U, () - T (u,(n)] (9)
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where (n) isthe set of transect data used in the kriging, u and u¢are the coordinate vectors
defining the location to be estimated and an existing data point, respectively and the overbar
indicates the average value of a property — here the average correlation between an estimation
location or data point and all other n data points along atransect. The right hand side of the
kriging equations containing the estimation location to existing data locations covariance values
remains unchanged. Deutsch (1994) points out that the redundancy measure in Equation 9 isa
positive, semi-definite function aslong asr is a positive, semi-definite correlation function.

The estimator for the finite domain kriging (FDK) formulation is essentially the same as that for
the OK estimator in equation 4;

n(u)
Zion (0) = BV (W) 2,,) (10)

a;=1

with the replacement of the correlation function by the redundancy measure defined in 9 within
the FDK system:

Y n(u)
%QVb(U)f(n)(Ua-ub)- mu)=r(u-u,) a=1..,nu)

In u)

I av,u)=1
1 o=t

(11)

Because r(, is a positive semi-definite function, the solution of the systemin 11 is unique as long
as each data point has a unique location. One disadvantage of the FDK system, relative to the
traditional kriging equations, isthat it is not an exact interpolator (i.e., it will not necessarily
return the measured data value at a measured location).

The estimation variance, or kriging variance, of the FDK system is given by:

n(u)

S 2 =1- AV, T (U- 1) - mu) (12)

a=1

The calculated value of the FDK estimation variance is always positive, but due to the
inexactitude of the FDK estimator, the FDK estimation variance is not necessarily equal to zero
at the data locations.

In the case where there are L transects each containing n; samples, the FDK estimator is modified
from equation 10 and applied to each string of data:

2L W=A1 Wau',) (13)

a,=1
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where the ny locations, U's, in string | are used to make the estimate. The corrected kriging
systemis:

16°1 v U) 1y (uy - up) - mPu)=r(u, -u) a=1..,n(u)
o (14)
fa v =1

b=1

The average value along a given transect is:

o 18 _

Zy=—aAy) I=1..L (15)
a=1

and an unsampled location can be estimated by considering each transect as a single data point

represented by the average value of the data on that transect. The kriging estimator for this type
of estimateis:

2u) = §w(U)Z, (16)

a,=1
The uncorrected kriging system for these estimates made with the transect averagesis.

;}éLwl W} (-1)- muy=r@u-1) 1=1..L

i (17)

qw, (u)=1

Tz

where:

r(u-I)=i§ ru-u®) (18)
| a=1

and

- =—24 Arw-ul) (19)
|n| b=1 a=1

The final estimation step is to employ the weights calculated for each transect to recombine the
corrected estimates made using values along each individual transect (equation 13) into afinal
estimate:

Zeox (U) = é. 2, (U) Zep () (20)

=1
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Thisfinal estimate at agiven location, u, can also be written as the sum of the estimate using
data along each transect multiplied by the sum of the weight assigned to each transect:

Zio (U) =8 2, (WA 112(0)) (21)

a=1

As an example of the FDK correction for an estimate at a single location using data from asingle
transect, Figure 4 shows the calculated kriging weights for data along the transect used to
estimate a point with an X coordinate that is at the center of the transect and that is 875 units off
of the transect. The weights calculated with the OK system (top image) and the FDK system
(lower image) are compared. The variogram model used in this example is a Gaussian model
with arange of 3900 units and no nugget effect. The results of the FDK system are to
significantly increase the values of the kriging weights assigned to the data closest to the
estimation location and reduce the weight assigned to the values at the ends of the transect.

Finite Domain Kriging Example

The effect of the FDK formulation relative to using a straightforward OK approach inaUXO
site characterization setting is examined systematically using three different 5000 x 5000 m
Poisson fields, one homogeneous and two non-homogeneous (Figure 5). The homogeneous field
has a uniform intensity and variance of the point distribution over the site. For the two non-
homogeneous fields, a non-uniform point distribution characterized by a single feature in the
center of the domain having increased intensity is superimposed on the homogeneous field. This
feature represents aUXO target in aUXO site (McKenna et a., 2001) and the two non-
homogeneous fields have different shapes in the area of spatially varying intensity centered at the
feature (i.e., target): the isotropic target and the anisotropic target (Figure 5). In the remainder of

this report, they are referred to as the “homogeneous,” “isotropic,” and “anisotropic” fields,
respectively.

The three different ssmulated anomaly fields are sampled with parallel, north-south transects.
For a given sampling event, afixed number of transects are selected at random locations along
the east-west axis. Four different transect widths are used: 10, 50, 100 and 200 meters. Along
each transect, the anomalies are counted within equal area sampling cells that are aways 50
meters long by 10, 50, 100 or 200 meters wide depending on the transect width selected.
Different numbers of transects with randomly chosen locations are selected for the different
sampling widths to sample different percentages of the total site. A total of 180 different
randomly selected transects are examined for each number of transects and transect width. The
sample cells along these transects provide the input data for both OK and FDK. The variogram
calculated from complete knowledge of the true distribution of the anomaliesis used with both
of the kriging algorithms. Use of the same variogram for al sample designs ensures that
differencesin the results will be solely to differencesin the kriging algorithms
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Figure 4. Kriging weights along atransect of data for estimation of a point off of the transect at
a’Y coordinate of 2500.0. The upper figure shows the kriging weights calculated using ordinary
kriging and the lower image shows the kriging weights calculated with the finite domain kriging
algorithm.

For each site, the performance of the OK and FDK algorithms and sampling designs with respect
to sampling density and transect width was investigated by estimating the object intensities at the
unsampled sites and then comparing them to the true intensities through jackknifing. Acrossall
estimates, the mean error, ME, or bias, the mean absolute error (MAE), and the mean square
error (MSE) were computed. Since the variable of interest is the actual number of objects, errors
are not comparable if the size of the cell isdifferent. To make the results comparable, all results
are normalized to errors associated with 50 x 50 m cells.
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Figure5. Distribution of anomalies simulated for testing finite domain kriging against ordinary
kriging. Thethree sites are referred to as homogeneous (top), isotropic (middle) and anisotropic
(bottom). The red dot in the lower two images shows the center of the target.

Figure 6 shows, for each spatial field and kriging algorithm, the average normalized ME and
MSE statistics as afunction of the sampling intensity. For the example resultsin Figure 6, 50-m
wide sampling transects are shown. As expected, when the homogenous field is examined, there
isamost no impact of sampling intensity on either ME or M SE regardless of the kriging
algorithm used. The exhaustive semivariogram computed from the homogeneous shows a pure
nugget effect and it makes the kriging estimate simply alocal average. On the other hand, on
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average, object intensities are overestimated when three to ten transects (i.e. 3 to 10 % of the
site) are sampled from either isotropic or anisotropic field. Overestimation of object intensities
happens when most sampling transects are located over the target area or near the target where
the object intensity is higher than that of the background. When enough numbers of transects are
sampled to locate some transects in the region of background intensity the estimated intensities
become unbiased. Thisleadsto higher MSE in this range of sampling intensity (3 to 10 % of the
area sampled) but the M SE remains nearly constant as more than 10% of the site is sampled.
Again there is no profound difference between OK and FDK in terms of MSE; FDK produces
dlightly higher MSE over the entire sampling intensity than OK. The results obtained for the
isotropic site and the anisotropic sites are similar and there is no significant difference between
them in terms of estimation errors. In addition, the same trend is observed for the MAE (not
shown in this report).

In summary, the difference in estimation errors between OK and FDK is much smaller than the
impact of the choice of the sampling intensity or the transect width for al three sites. One of the
main reasons is that the impact of FDK is lessened when multiple transects are considered, as the
number of data from the same transect decrease and data used in the kriging estimated are come
from multiple transects. In that case, data manipulation by FDK does not help improve the
estimation and using OK appears to be justified. Based on these results, the OK algorithm is
used for the remainder of the estimation problems discussed in this report.
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Figure 6. Comparison of the mean error (bias) and the mean squared error, top and bottom
images repectively for estimates made with OK and FDK as a function of the percent of the site
sampled. Results are presented for the homogeneous, isotropic and anisotropic sites shown in
Figure5.

22



Model Evaluation

For the example applications examined in this report it is desirable to assess the model
predictions against the true spatial distribution of anomalies. Thisis done through the general
process of jackknifing where alarge proportion of the available data are held back from the
analysis and model building and only used to assess the results of the model after it is created.
The only data that are used to make the estimations are those sampled along the transects.

For the estimation of the total number of anomalies or the number of anomalies of interest at any
location, it is possible to directly compare the estimates to the true values through the jackknifing
procedure. However, another approach that appears to offer benefits to the decision makers at a
UXO siteisto map the probability of having at least one anomaly of interest at any location.
Estimates of probability cannot be directly compared to true probability values as those are only
0.0 or 1.0. Therefore, it is necessary to check the results of a decision that would be made using
the probability map against the true presence or absence of anomalies of interest at every
location to assess the results of this probability estimation. In order to make adecision, it is
necessary to determine at what probability the results will be compared. This determination is
done by examining the problem from the perspective of engineering reliability (e.g. Harr, 1987).
The decision made at any spatial location is afunction of both the estimated reliability, Re and
the design reliability, Rp, as specified by the decision maker. The value of Re at every location is
calculated directly from the estimated probabilities as:

Re = 1.0 — P(at least one anomaly of interest) (22)
The value of Ry is set by the decision maker to alevel that is acceptable by all involved parties.
The specific meaning of Rp at any location is the probability of not having one or more

anomalies of interest at that location.

The four different results of decisions that can be made and their relationship to the actual
presence or absence of at least one anomaly of interest are:

Correct (A): (Re® R;) and (#aomay <1) (23)
Correct (B): (Re<Ry) and (#,5m, % 1) (24)
False Positive: (Re <R,) and  (Hy oy <1) (25)
False Negative: (Re® Ry) and (#yomy,® 1) (26)

The two types of correct decisions (A and B) occur when the location is correctly left asis (Re 2
Ro and #anomaly < 1) or when the siteis correctly assigned to an area requiring further
investigation (Re < Rp and #anomaly 2 1). The two types of incorrect decisions arise when the
location is unnecessarily slated for further surveying (False Positive) or when the location is not
assigned to the region requiring further surveying, but in fact has at |east one anomaly of interest
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(False Negative). Itisthelatter of the two incorrect decisions that can be of severe consequence
in UXO remediation.

For agiven value of Rp, there are two steps to assessing the results of the estimated probability
values. Thefirst assessment step consists of using the estimated values of Re at each location to
determine whether or not the Re isless than or greater than Rp. This determination is then
combined with the true number of anomalies of interest at each model cell and the decision result
(Equations 23 through 26) is determined. The result of the decision is recorded for each location
within the site and the final proportions of each type of result across the site are tabul ated.

It is recognized that the design reliability can be set to optimize different remediation objectives.
For example, it may be desirable to select a value of Ry that minimizes the number of false
positive and fal se negative errors under aloss function that counts each fal se negative as being of
equal importance to three false positives. As another example, the objective may be simply to
maximize the number of correct decisions. In order to examine the changesin the decisions
made as a function of Rp, the model assessments shown in this report are conducted over arange
of Rp values.
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Site Characterization Process

The steps in the site characterization process used here are outlined below. These steps assume
that the goals of the site characterization have aready been defined and agreed upon by the
different partiesinvolved in making decisions at the site. The type of sample datathat go into
these analyses can be any combination of data collected at points, along straight transect and/or
along meandering path transects

1)

2)

3)

4)

5

6)

7)

Assembly of the spatially referenced site data. These include the geophysical survey
data, the site specific calibration of the geophysical instrument and any prior information
on the site history. Ideally these data are already contained in a data base and a GIS and
are all spatially referenced and the quality of the spatial referencing has been assessed.
The sample data and the site are discretized into sample cells and decision cells each of a
finite areal extent. The easiest approach isto make the sample cell size and the decision
cell size equal; however, thisis not aways possible as the sample cell sizeis generally
limited by the sensor footprint.

The attribute of interest that will be used to make site characterization decisionsis
determined and aggregated to the size of the sample cell. The spatial correlation of these
data are calculates as an experimenta variogram and a variogram model isfit to the
points of the experimental variogram.

The applicability of the variogram and the kriging procedure to the specific estimation
problem is checked through a cross-validation procedure. This cross-validation
procedure is demonstrated in Example Application 1.

Estimates of the attribute of interest are made for distances out to the range of the
variogram. These estimates are made at the scale of the decision cell using ordinary or
probability indicator kriging.

Decisions are made for each decision cell that has been estimated. Typically, these
decisions are to either apply more detailed surveying to the decision cell or to leave it as
is. Thetype of decision made and its effect on the final results will depend on the
attribute that has been estimated (number of anomalies or probability).

Based on the results of the estimation, locations for additional transect sampling can be
identified. These locations can be chosen to provide the greatest reduction in uncertainty
or to meet other site characterization objectives. After these additional samples are
collected, the site characterization process starts over with step number 1.

The calculations involved in this site characterization process are not overly time consuming and
after the seven steps above have been completed once, it should be possible for atrained analyst
to redo the steps with additional datain lessthan aday. This short time frame will allow for near
real time iteration of the data collection and decision making process.
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Demonstration Applications

Four different demonstration applications are presented. Each application highlights a different
aspect of the geostatistical approach to making UXO site characterization decisions:

1) Application 1: This application demonstrates the flexibility of the kriging algorithm to
estimate different properties that might be sampled on a UXO site such as the total
number of anomalies per sample cell, the number of anomalies of interest within a
sample cell, or the probability of at least one anomaly of interest within each sample cell.
The ability to check the model setup prior to making estimates through a cross-validation
process is demonstrated. The sample data are extracted from a simulated site.

2) Application 2: This example uses the Pueblo of Laguna N-11 target area as surveyed by
Oak Ridge National Laboratories (ORNL) as the basis for demonstrating the probabilistic
estimation of the target boundary from alimited number of paralel transects. This
transect sampling design is, in general, similar to what would be used to detect atarget
area of aknown shape and size with a specified level of confidence.

3) Application 3: Thisexampleis an extension of Application 1 that incorporates prior
information on the site to extend the kriging estimates further away from the sample data.
The stratum approach to incorporate prior information used here is probably the simplest
means of incorporating prior information into kriging estimates and is well-suited for the
types of prior information typically encountered at UXO sites.

4) Application 4: compares the decision results made for the Laguna N-11 site for two
different approaches to locating the second round of samples. The two approaches
considered are: 1) to locate a single meandering transect in the area of highest uncertainty
surrounding the target area; 2) to infill with anew set of transects exactly midway
between the existing transects.

Application 1

The first example application uses a simulated UXO site to demonstrate the ability of
geostatistical estimation to predict the spatial distribution of three different attributes:. the total
number of anomalies, the number of anomalies of interest and the probability of having at least
one anomaly of interest at all unsampled locations. These estimations are made from initial
transect data that were collected on two separate straight transects and on a single continuous
meandering path transect.

True Site and Sample Data

The true site used in this example is created using the UXO simulator developed previously for
this project (McKennaet al., 2001). The distribution of all objects at the site is shown in Figure
7. Figure 7 shows atotal of 59,467 objects within a25 km? area. The average anomaly intensity
is 2.38E-03 m™?. Asistrue with the majority of UXO sites that have been geophysically
surveyed, the anomalies are not distributed uniformly throughout the site, but show higher
intensities near the two target areas. The target areain the northeastern corner of the site was
created to represent the result of two separate mortar firing locations sending ordnance onto two
distinct yet overlapping target areas. The higher anomaly intensity in the southwest corner of the
site is representative of the anomaly distribution resulting from repeated aerial bombing of a
target point with a preferential southwest to northeast flight path.
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UXO Simulation
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Figure 7. Distribution of anomalies within the smulated site. The axesdimensionsarein
meters.

In the UXO simulator, each simulated anomaly is assigned a signal strength from one of two
different, overlapping, log-normal distributions. The distribution of signal strengths for the
clutter and fragments has a geometric mean of 1.0 and ranges from 0.1 to 10.0. The distribution
of signal strength for the anomalies that are true UXO ranges from 1.0 to 100.0 with a geometric
mean of 10.0. It isnoted, that there is significant overlap in the two distributions. The
distribution of signal strengths across al simulated objectsis shown in Figure 8.

27



Signal Strengih of All Anomalies
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Figure 8. Histogram showing the distribution of the simulated signal strengths for al objects
within the site domain.

The sample data are collected aong three different transects: two straight transects that are
orthogonal to each other and one meandering path transect in the southwestern portion of the
site. These transects have been located to intersect suspected target areas as well asto provide
some coverage across the site. The location of the meandering transect was set up to be limited
by vegetation or other obstacles at the site. Each transect has a constant width of 25 meters as
might be obtained from back and forth passes of a helicopter mounted sensor system. Figure 9
shows the location of the transect data. The color scale in Figure 9 indicates the total number of
anomalies within each 25 x 25 meter cell along the transect. A total of 706 cells, or 1.77 percent
of thetotal site, are sampled aong the three transects.

Inherent in the geostatistical estimation approach is the conceptualization of the site as a discrete
set of equal size model cells. Ideally, the scale of the samples and the scale at which the
variables are estimated will be the same. For thiswork, all samples have asize of 25x25 meters
and the estimates are also made on cells of similar size. The site considered in this application is
5000 by 5000 meters and has atotal of 40,000 cells. A total of 706 of these cells have been
sampled and estimates are made at the remaining 39,294 cells.
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Locations of Transect Data

5000.

. 5.0
4000._| -

1 4.0
3000._ /g 30
2000 é e

1 ,

. 1.0
1000._|

. Vi

. 0.0

0. ] T T T T I T T T T | T T T T | T T T T T T T T
0. 1000. 2000. 3000. 4000. 5000.

Figure 9. Locations of sampling transects on the smulated site. The color scale denotes the
total number of anomalies within each 25x25 meter cell along the transects

Variograms

The sample data collected along the transects are used as input for the variogram calculations.
For each of the 706 sample cells contained in the transects, several summary data are recorded
including the total number of anomalies, the total number of UXO (assumes that al anomaliesin
each cell were excavated), the number of anomalies above signal strength thresholds of 3, 4 and
10 nT/m and the average signal strength of all anomalies within the cell. At this point in the site
characterization process, the site characterization team must determine the variable in which they
are most interested in mapping. Idealy, all anomaliesin the sample transects would be
excavated and the spatial distribution of UXO would then be estimated across the site. In redlity,
especialy at alarge site, this amount of excavation will not occur during the site characterization
phase.

In lieu of the exact information provided by excavation, the spatial distribution of all anomalies,
or all anomalies of interest (e.g., those with asignal strength above 3 nT/m) is considered.
Estimating the former will provide information on the locations of increased anomaly density
that correlate with target areas. Estimation of the latter property, anomalies of interest, is done
under the assumption that, in general, the set of anomalies with larger signal strengths include
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the true UXO. Inthisreport, uncertainty in the signal strength and itsrelation to true UXO, for
example as defined through a ROC curve, is not considered. The effect of different ROC curves
on the site characterization process has been discussed in (REFERNECE FOR LAST YEAR
REPORT) and is also being examined in a set of controlled tests administered by SERDP
through the Mitretek Corporation that will be documented in a future report.

Three variograms are calculated on the transect data using: 1) the total number of anomalies; 2)
the number of anomalies with signal strengths greater than or equal to 3 nT/m (an anomaly of
interest) and 3) the probability of having at |east one anomaly of interest at every location. The
variograms cal culated for this exercise are done using the Variowin software (Pannatier, 1996)
that isfreely available at: http://www-sst.unil.ch/research/variowin/index.html. Analysis of the
sample data did not reveal any preferential direction of spatial correlation and therefore al
variograms were calculated as omnidirectional variograms (i.e., spatia correlation in all
directionsis averaged into a single variogram value for each separation distance).

The variogram of the total number of anomaliesis shown in Figure 10. The parameters of the
model variogram fit to the experimental variogram points are given in the first line of Table 1.
Figure 10 shows that there is considerable small-scale variability in the number of anomalies
from one cell to the next. The nugget value of 1.9 accounts for 67 percent of the total variance
(total variance = nugget + sill = 2.82). Therelative value of the nugget is controlled by the
intensity of the anomalies and the sample cell size with larger cells providing a greater
smoothing effect and thus arelatively lower nugget. The range of the total anomaly variogram is
425 meters, or roughly 1/12"™ of the length of the site.

The variogram for the anomalies of interest, those above 3.0 nT/m, isshown in Figure 11. The
variogram model parameters for this variogram are given in the middle row of Table 1. Similar
to the variogram of the total number of anomalies, thereis arelatively large nugget effect. For
the anomalies of interest variogram, the nugget represents 55 percent of the total variability. The
range of the anomalies of interest variogram is 250 meters, or five percent of the total domain
length. Thisrange is shorter than that of the total number of anomalies as expected due to the
more localized nature of the anomalies of interest.
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Figure 10. Experimental and model variogram fit to the total number of anomaly data obtained
on the transects.

¥ (IhD

0.72d
0.64
0.58
0.48

0.4
0.32
0.24
018
0.08

o

Omnidirectional

1 1 1 1 1 1 1 1 1 -
Lo

1]

90 180 270 360 450 540 B30 Y200 810
Ihl

Figure 11. Experimental and model variogram fit to the number of anomaly data with
geophysical signals above 3.0 n'T/m obtained on the transects.

The third variogram is calculated on an indicator transform of the sample data. Those cells
containing at least one anomaly with asignal strength of 3.0 nT/m or greater are assigned a 1.0
and those without such an anomaly are assigned avalue of zero. These indicator values are
directly interpretable as the probability of at least one anomaly of interest existing within each
cell. A total of 121 cells, or roughly 17 percent of the sample data, contain at least one anomaly
with asignal strength of 3.0 nT/m or larger. The variogram calculated on these indicator datais
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shown in Figure 12 and the variogram model parameters are given in the bottom line of Table 1.
Thisindicator variogram has a nugget that accounts for 52 percent of the total variability in the
dataand has arange of 800 meters. Thislonger range value, relative to the other two variograms
is, inalarge part, due to the large number of contiguous cells with 0.0 indicator values where the
sample transects cover areas of the site without any anomalies of interest.
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Figure 12. Experimental and model variogram fit to indicator data created for a
geophysical signal threshold of 3.0 nT/m.

Table 1. Variogram model parametersfor thethree different data sets.

Model Type Nugget Sill Range (m)
Total Anomalies Spherical 19 0.92 425
Number of Anomalies Spherical 0.30 0.25 250
>=3nT/m
Probability of one Spherical 0.075 0.068 800
anomaly >= 3 nT/m

Model Validation

A considerable amount of literature has appeared in recent years arguing that it isimpossible to
validate or verify predictive models and that such models can only be disproved and even then
they can only be disproved for the specific application that is considered (e.g., Konikow and
Bredehoeft, 1992). Several authors have argued that such phrases as model “validation” or
“verification” be replaced with less philosophically loaded terms such as “model checking” or
“model evaluation”. Arguing the philosophy of such issues and the correct semanticsis beyond
the scope of thisreport. Here we use the historically popular form of “cross-validation” asa
model checking technique and use the consistent term “model validation” to describe the
process.
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A standard procedure for checking the applicability of any statistical prediction model to agiven
problem is the cross-validation technique. Cross-validation consists of deleting one datum from
the original data set containing n points, estimating the value of the deleted datum using the
remaining (n-1) data, comparing the estimated value to the deleted true value, calculating one or
more performance measures on the results of this comparison (e.g., the error or absolute error)
and then averaging the value of the performance measure over all n deletions of adatum. An
excellent review of cross-validation and other model evaluation techniquesis provided by Efron
and Gong (1983). As pointed out by Efron and Gong (1983), a distinct advantage of the cross-
validation technique isthat it can be applied to predictions made through any type of estimation
algorithm of arbitrary complexity.

In the assessment of estimates made through kriging, an existing datum at alocation is removed
and the kriging algorithm is used to estimate the value of that datum using the remaining data.
The use of a search window that includes a finite number of sample data less than the total
number of sample data means the same number of data are used to estimate the value at the
deleted location as at any other location when avalue is not deleted. In other words, in the
definition of cross-validation given by Efron and Wong (1983) the n-1 remaining data are used
to make the estimate. In cross-validation of the kriging results in this report, the full number of
data in the search window are used to make this estimate; however, the datum at the estimation
location is not included in this estimate.

Cross-validation is conducted for estimates of all three quantities being considered. The results
of the cross-validation are presented as tables showing the proportions of different type of results
for the estimation of the total number of anomalies and the number of anomalies of interest and
as agraph for decisions made from the probability map.

The kriging program, kt3d, developed by Deutsch and Journel (1998) is used to create estimates
of all three properties from the sample data. In the case of estimating the total number of
anomalies, kt3d produces non-integer estimates of the number of anomalies at each cell. A
fraction of an anomaly is not arealistic estimate and therefore the estimates are adjusted to be
whole integer estimates of the number of anomalies by rounding each estimate up to the next
integer value. This adjustment imparts additional conservatism to the estimates by increasing the
estimated number of anomalies in any one cell by as much as 0.99 and forcing there to be at least
one anomaly in every cell. Theresults of the estimation of total number of anomalies are
summarized in the matrix in Table 2. In Table 2, the different estimated numbers of anomalies
are shown in the rows and the different numbers of true anomalies are shown in the columns. In
Table 2, values on the diagonal are the number cells in the domain where the total number of
anomalies was correctly estimated. Valuesin the cells above the diagona are where the
estimated number of anomaliesis less than the true number of anomalies and these cells can be
thought of asfalse negative results. Entriesin the matrix of Table 2 below the diagonal contain
the number of cells where the estimated number of total anomaliesis greater than the true
number. These results are, in a sense, false positive results
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Table 2. Cross-validation results of estimation of total number of anomalies.

0 1 2 3 4 5 6 7
0.000 | 0.000 | 0.000 | 0.000 [ 0.000 [ 0.000 [ 0.000 [ 0.000
0.047 | 0.033 | 0.031 | 0.004 [ 0.001 [ 0.003 [ 0.001 [ 0.000
0.166 | 0.200 | 0.144 | 0.068 | 0.016 [ 0.013 | 0.003 | 0.001
0.016 | 0.034 | 0.042 | 0.025 [ 0.025 [ 0.008 | 0.006 | 0.003
0.006 | 0.003 | 0.007 | 0.020 [ 0.006 [ 0.006 | 0.007 | 0.003
0.000 | 0.003 | 0.004 | 0.007 [ 0.008 [ 0.006 | 0.001 | 0.001
0.000 | 0.000 | 0.001 | 0.004 [ 0.003 [ 0.004 [ 0.000 [ 0.004
0.000 | 0.000 | 0.000 | 0.000 [ 0.000 [ 0.000 [ 0.000 [ 0.000

No o~ wNE O

Theresultsin Table 2 show how well the chosen variogram model and kriging algorithm work in
cross-validation mode. These results represent a self-consistent check on the estimation process
without having to collect any additional data. The percent of the estimates that are correct are
21.4, 57.5 percent of the estimates are false positives and 20.7 percent are false negatives. Table
2 shows that no cells were reestimated as containing zero anomalies and this result is due to the
post-estimation modification of rounding the estimated fractional anomaly amount up to the next
highest whole integer. This upward adjustment also biases the overall estimates towards the
conservative end of the spectrum as evidenced by the larger number estimates below the
diagonal (false positives) than above the diagonal (false negatives). Evidence of the smoothing
nature of the kriging algorithm is seen by the results tending to overestimate lower true values
and underestimate higher true values (Table 2).

The results of the cross-validation estimation of the number of anomalies of interest are
summarized in Table 3. Again, the proportion of correct decisions for each number of anomalies
are shown in the diagonal of the matrix, false negatives are above the diagonal and false positive
results are below the diagonal. For these estimates, 8.9 percent were correct, 86.8 percent are
false positives and 4.2 percent are false negatives. The large number of false positivesis
influenced by the conservative decision of rounding up the fractional estimates to the next
integer value. Almost all of the false positives occur at locations where one anomaly of interest
is estimated but none exist.

Table 3. Cross-validation results of estimation of the number of anomalies of interest.

0 1 2 3 4 5 6 7
0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
0.807 | 0.082 | 0.021 0.004 | 0.001 0.000 | 0.000 0.000
0.017 0.024 | 0.004 [ 0.006 | 0.003 0.001 0.000 0.001
0.004 | 0.011 0.004 | 0.003 | 0.001 0.003 | 0.000 0.000
0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
0.000 0.000 | 0.000 0.000 | 0.000 [ 0.000 | 0.000 0.000
0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000
0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 | 0.000

~NoO o~ WNPEFEO

For the estimation of the probability of having at least one anomaly of interest, the cross-
validation step is not as straightforward as in the case of the total number of anomalies and the
number of anomalies of interest. For probability mapping, there can only be two correct
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answers. “0” or “1” corresponding to either none or at least one anomaly of interest existing at a
location, respectively. However, the estimation procedure produces afull range of probabilities
within [0,1] and therefore it is necessary to apply some sort of decision rule to the estimated
probabilities before comparing them to the true values. The decision rule approach that has been
developed and tested in thiswork is that of design reliability, Rp, as defined above.

The estimated probabilities of having at |east one anomaly of interest are interpreted as the
complement of the estimated reliability: Re = 1.0 — P(anomaly). Any location on the site where
1.0 - P(anomaly) isless than a specified design reliability, Rp, must be surveyed in more detail,
and any location where 1.0 - P(anomaly) exceeds Rp can be left asis. The higher the specified
value of RD, the more conservative are the site characterization decisions. The results of the
decisions made using this strategy can be evaluated through cross-validation in the same way the
estimates of total number of anomalies and number of anomalies of interest have been evaluated.

Results of decisions made using the cross-validation estimates of the probability of at least one
anomaly of interest are shown in Figure 13 for arange of Rp values. At higher values of Rp, the
proportion of correct decisions decreases and the proportion of false positive decisions increases.
For all values of Rp shown in Figure 13, the proportion of false positive decisions remains less
than or equal to 0.05. These results demonstrate the ability of the probability mapping to make
relatively refined decisions compared to just estimating the total number of anomalies or the
number of anomalies of interest. Asan example, the proportion of correct decisions made with
the probability map remains over 0.50 for all values of Rp, whereas in the estimation of the total
number of anomalies and the number of anomalies of interest, the proportion of correct decisions
were 0.214 and 0.089 respectively.

The cross-validation process is meant to recreate the mechanics of the estimation process as
closely as possible. Therefore, the results of the actual estimation should be consistent with the
results observed in the cross-validation step. In apractical application, it is possible to examine
the cross-validation results and determine whether or not the variogram model and kriging are
adequate for the application. Different variogram models and options within the kriging
algorithm can be test ed using cross-validation before the final estimates are made. 1n a practical
application, the cross-validation results are the only thing that will be available; however, for this
hypothetical site, the actual results of the estimation can be compared to the underlying “true”
distribution of the anomalies. This comparison to the true data held back from the estimation
process is termed “jackknifing”.
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cross-validation results.

Estimation Results

After the variogram model has been estimated and has been deemed satisfactory through a cross-
validation exercise, it can be used in akriging process to estimate values of the chosen attribute
at unsampled locations. The three variograms modeled above are now used to estimate the total
number of anomalies, the number of anomalies of interest and the probability of at least one
anomaly of interest at unsampled locations within the domain. The estimations are limited to
being within the distance equal to the range of the variogram from the sample data.

The estimates of the total number of anomalies are shown in Figure 14. A total of 23,582
estimates are made. The estimated values show the highest number of anomaliesin the upper

left (NE) corner corresponding to one of the suspected target areas. The estimates made from the
meandering path data also show relatively high numbers of anomalies, but not to the same level
asin the NE corner of the site. The discontinuities along the transects are caused by the
relatively large nugget effect in the variogram. Each sample data point is honored exactly, but
thisis accomplished in the kriging algorithm by creating arelatively sharp inflection in the
estimated values at the data points.
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Figure 14. Estimates of the total number of anomalies within each model cell.

The accuracy of the estimates of the total number of anomalies are evaluated in Table 4. These
results are in the same format as those used in the cross-validation exercise above and can be
directly compared with those results. Across the 23,582 estimations, 22.9 percent are correct;
59.1 percent are false positive and 18.0 percent are false negatives. Each of these results are
within +/- three percent of the values obtained in the cross-validation.

Theresultsin Table 4 show that the majority of the cells are estimated to contain two anomalies
and this creates the majority of false positives in areas where the actual number of anomalies of
interest are zero or one. The majority of the false negatives, those cells above the diagonal,
occur when kriging under estimates the number of total anomalies by one when there are two or
three total anomalies actually in the cell.

Table 4. Results of the jackknifing assessment of the total number of anomalies estimation.

0 1 2 3 4 5 6 7
0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000
0.039 | 0.042 | 0.025 | 0.011 | 0.003 | 0.001 | 0.000 [ 0.000
0.164 | 0.224 | 0.147 | 0.064 | 0.022 | 0.007 | 0.002 | 0.001
0.023 | 0.044 | 0.049 [ 0.030 | 0.017 | 0.009 [ 0.003 | 0.001
0.003 | 0.008 | 0.010 | 0.015 | 0.007 | 0.005 | 0.003 [ 0.002
0.000 | 0.001 | 0.002 | 0.002 | 0.004 | 0.002 [ 0.001 | 0.001
0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.002 [ 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000

~No ob~ WNEO

A similar set of resultsis produced for the estimation of the number of anomalies of interest
within each cell. The estimated values are shown in Figure 15, and the estimation results are
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summarized in Table 5. The shorter range of the anomalies of interest variogram leads to
considerably fewer locations being estimated, 13,275 estimates, when compared to the estimates
of the total number of anomalies (Figure 14). These estimates arein arelatively tight band
around the data |l ocations on the straight and meandering transects. Of the 13,275 total
estimations, 9.2 percent are correct, 87.6 percent are false positives and 3.2 percent are false
negatives. All of these estimated percentages are within +/- 1 percent of the values obtained in
the cross-validation.

Estimated Anomalies of Interest
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Figure 15. Estimated number of anomalies of interest.

Examination of Table 5 shows that amost all of the false positive estimates (83.5 percent of all
estimates) occur when one anomaly of interest is estimated, but no anomalies of interest exist at
that location. The high number of false positives, in this case are a direct consequence of the
decision to round all fractional estimates up to the next highest integer number of anomalies.
The magjority of the false negative results (1.7 percent of all estimates) occur when one anomaly
of interest is estimated and two actually exist at that location. This type of false negative result
goes away when the estimation problem is turned to estimating the probability of at least one
anomaly of interest as the actual number of anomalies of interest becomes irrelevant aslong as
thereis at least one of them.

Table5. Estimation results for the anomalies of interest.

0 1 2 3 4 5 6 7
0.000 [ 0.000 | 0.000 | 0.000 | 0.000 { 0.000 | 0.000 | 0.000
0.835 | 0.083 [ 0.017 | 0.005 | 0.001 | 0.000 { 0.000 | 0.000
0.011 | 0.021 [ 0.008 | 0.004 | 0.002 | 0.001 | 0.000 | 0.000
0.002 | 0.002 [ 0.004 | 0.002 | 0.001 | 0.000 { 0.000 | 0.000
0.000 | 0.000 [ 0.000 | 0.001 | 0.000 | 0.000 { 0.000 | 0.000
0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000
0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000

~NoO o wWwNE O
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The final attribute to be estimated in this exercise is the probability of at least one anomaly of
interest at every location. The results of this estimation cannot be shown in asimple table, as
were the previous two sets of estimations, because the results are in the form of adecision that is
afunction of the specified value of the design reliability. The estimates of the probability of at
least one anomaly of interest are shown in Figure 16 and the decision results as a function of Ry
are shown in Figure 17.

The indicator variogram calculated on 0,1 values defining the absence or presence of at least one
anomaly of interest at every sample location provides the longest range of any of the three
variograms calculated in this example application. The effect of thislonger rangeis that 36,814
probability estimates are made which is a significantly larger number than those created in
estimating either the total number of anomalies or the number of anomalies of interest. From
Figure 16, the highest probability of at least one anomaly of interest occursin the NE corner of
the site where atarget areais suspected. The decision results as a function of Ry show declining
proportions of correct values as Ry increases made up for by an increasing proportion of false
negatives. These results show that even at arelatively high Rp of 0.95, the proportion of
decisions that are false negativesis still lessthan 0.4. The proportion of decisionsthat are false
negatives at this same level of Ry is approximately 2 percent. Figure 17 can be compared to the
same curve created in the cross-validation exercise (Figure 13). The two graphs are nearly
identical.

Probability of One Anomaly of Interest
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Figure 16. Estimated values of the probability of at least one anomaly of interest.
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Application 1. Summary

The main conclusions from this example application are: 1) the probability mapping approach
provided superior decision making results when compared to the two different anomaly mapping
approaches; and 2) that the cross-validation exercise done using only the existing sample data
provided excellent predictions of the results of the actual estimations.

The probability mapping approach provided higher levels of correct decisions and lower levels
of false positive decisions when compared to mapping the total number of anomalies or mapping
the number of anomalies of interest. To some extent this result is due to the decision to round up
any fractional estimates of number of anomalies to the next integer value in the two anomaly
mapping approaches. This decision creates artificially high levels of false positive results.
However, mapping the number of anomalies requires that some type of fairly arbitrary decision
be made as to what fraction of an estimated anomaly should be counted as a full anomaly. For
this work, the most conservative possible approach was taken. The probability mapping
approach avoids having to make the decision as to what fractional value needs to be counted as a
true anomaly by requiring a decision on the acceptable reliability to which a site needs to be
characterized. Another approach to estimating numbers of anomalies that avoids the arbitrary
decision making would be to use indicator kriging to estimate the probability of having a
particular integer value of anomalies at any location. However, the decision making focusis
generally on whether or not thereis at least one anomaly of interest, not whether there are three,
four or five and therefore, the current probability mapping approach gets at the issue of
importance directly.

The cross-validation step provided excellent predictions of the results that were obtained in the
actual estimations. This step is generally used to compare different variogram models and
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options in the setup of the kriging algorithm. Additionally, cross-validation could be used to
assess the impacts of different decisions made in the site characterization. For example, the
choice of the optimal value of Ry for the making decisions off the probability map, or the effect
of choosing different fractions of atrue anomaly above which to round up to next integer value.
Different values of these two thresholds could be compared in the cross-validation stage and then
applied in the decision making that uses the final estimations.

The excellent correlation between the cross-validation results and the final prediction results

obtained in this example depend on the available samples being fully representative of the site
conditions.
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Application 2

The second exampl e application uses magnetometer data collected at the Pueblo of Lagunasite
in New Mexico in the spring of 2002 to demonstrate the ability of geostatistical estimation to
estimate the probability of having at least one anomaly of interest at all unsampled locations.
These estimations are made from initial transect data that were collected on multiple straight and
parallel transects and the final goal isto determine the extent of the target areas as defined by the
locations of the anomalies of interest.

Pueblo of Laguna Site and Sample Data

The N-11 target areain west-central New Mexico is selected from several different target areas
that have been geophysically surveyed at the Pueblo of Lagunato serve as an example site for
this application. The N-11 siteisarid grassland at an elevation of approximately 1750 meters
above sealevel. The siteisroughly 6900 feet by 6500 feet (area of 1030 acresor 417 ha). The
N-11 Target Areawas used as a practice range for precision aerial bombing training for an
indeterminate amount of time between the end of WW 11 and 1990. Previous work (McKenna,
2001) used the N-10 target area at the Pueblo of Lagunato develop initial ideas on the use of
gpatial statistics to characterizing UXO sites. The surveyed area of the N-11 siteis nearly an
order of magnitude larger than that of the previously examined N-10 area.

The data used in this example were collected in the spring of 2002 by the geophysics group at
Oak Ridge National Laboratory (ORNL) using a set of eight helicopter mounted magnetometers.
More details on the surveying equipment and its capabilities can be found in Doll et a. (2003).
The magnetic anomaly data were reported as the analytical model signal in nT/m on a 3x3 foot
grid. The original footprint of the airborne sensor platform is approximately 25 feet, yet this
footprint width is not seen in the final data as reported on the 3x3 foot grid. The original
dimensions of the surveyed area at the site are roughly 7000x7000 feet resulting in over 5.5E+06
grid nodes for the analytical magnetometer signals. Not al of these locations contained actual
signal data, as much as 50 percent of these node locations were not surveyed and were reported
as“missing” data. For thisexercise, the siteistrimmed to dimensions of 6900x6500 feet and all
of the grid nodes with missing data are removed. This smaller domain and removal of the nodes
without a magnetometer signal data results in approximately 2.2E+06 grid nodes with
magnetometer signals remaining.

The basis of this approach is that characterization decisions will be made over areas of the site
with afinite size. Whileit is possible to make geostatistical predictions on 3x3 foot cells,
corresponding directly to the support of the survey data, this spatial resolution would most likely
be too fine for practical use in making characterization decisions. For this example, we use a
15x48 foot cell size for making decisions. This decision cell size isthe minimum area over
which adecision (i.e., schedule for detailed surveying or leave asis) will be made. This
rectangular shape is chosen to be consistent with a sensor having a 15-foot wide footprint that is
considerably smaller than that used by ORNL in the actual survey, but is somewhat larger than
the widths of other sensor platforms often used in UXO characterization studies.

Theinitial survey data are resampled onto the 15x48 foot decision cells. Each decision cell
contains a maximum of 720 original 3x3 foot survey cells. Some decision cellswill have fewer
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original survey cells due to the less than 100 percent survey coverage. For each decision cell, the
maximum signal value across all 720 or fewer survey cellsisfound and shown in Figure 18. The
data shown in Figure 18 serve as the ground truth for this exercise.
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Figure 18. Survey datafor the Pueblo of Laguna N-11 target area site as sampled on the 15x48
foot decision cells. The maximum signal value within each decision cell is shown here.

The N-11 target area data upscaled to the 15x48 foot scale are then sampled along 14 parallel
transects with a constant spacing of 480 feet. The sampling transect |ocations and the maximum
signal value for each decision cell along those transects are shown in Figure 19. Note that not all
of the transects in Figure 19 are continuous across the domain. Thisisaresult of the original
sampling coverage shown in Figure 18 above, but it is also consistent with a parallel transect
survey design where topography, vegetation or infrastructure precludes surveying in some areas
of the site. These 14 transects cover roughly 3 percent of the site.

Mapping Signal Strength
Asan initial test, or validation, of the effectiveness of the geostatistical approach to mapping
from limited transect information, the data shown in Figure 19 are used to compute the
variogram of the maximum signal strength. Thisvariogram isfit using a spherical model with a
range of 2800 feet and a nugget value of 3.0 (Figure 20). Thisvariogram is used with the
transect data and ordinary kriging to estimate the maximum signal value at the same locations for
which the original sampled data were obtained. The results of this estimation are shown in
Figure 21. Visua comparison of Figures 18 and 21 indicates that geostatistical techniques are
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capable of making accurate predictions of spatially distributed anomaly signal values from
limited transect data.

Transect Sample Locations
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Figure 19. Sample transect datafor the Pueblo of Laguna N-11 site. Along each transect, the
maximum analytic signal within each 15x48 foot decision cell is shown.
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Figure 20. Variogram of the maximum analytic signal as calculated from the N-11 target area
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Figure 21. Estimated maximum analytical signal values made using ordinary kriging and the
transect data and variogram shown in Figures 19 and 20 respectively. Compare to the actual
sampled datain shown in Figure 18.



Probability Mapping
The estimation of the maximum signal strength across the site from the limited transect datais
one type of geostatistical mapping that can be employed in UXO studies. Thistype of map could
then be used to determine the locations of all estimates above a certain geophysical signa
threshold (e.g., 5 nT/m) and these locations could be scheduled for more detailed geophysical
surveying. The drawback of this approach isthat is does not directly account for uncertainty in
the estimates of the maximum signal. Accounting for uncertainty in these estimates would
require combining the estimated signal values with the kriging variance map. However, this
approach would only account for uncertainty as afunction of the distance away from any
existing transect data and does not directly take into account any uncertainty with respect to the
decision being made (e.g., uncertainty with respect to being above or below the 5 nT/m
threshold). Thistype of uncertainty could also be accounted by kriging under the multiGaussian
model (e.g., Goovaerts, 1997), but a simpler approach that does not require the transformation of
the datato a Gaussian distribution and that has proven useful in previous studies is to map the
probability of having at least one anomaly of interest across the site. Thisis the same approach
as the third demonstration used in the first example application.

The transect data are reclassified as binary indicators (equation 8) using a threshold of 5.0 nT/m.
An indicator value of 1.0 defines alocation with an anomaly above 5.0 nT/m and is aso the
probability of at least one anomaly above this threshold existing within the decision cell at that
location. An indicator value of 0.0 denotes alocation with no anomalies, zero probability, above
the 5.0 nT/m threshold. These indicator data are used to calculate and model an indicator
variogram for the site. Thisvariogram is shown in Figure 22. The indicator variogram was fit
with anugget value of 0.013 and two spherical models having ranges of 600 and 2800 feet and
sills of 0.009 and 0.043.

Indicator Semivariogram
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Figure 22. Indicator variogram for the N-11 target area site and a geophysica signal threshold
of 5.0 nT/m.
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The indicator data along the transects and the indicator variogram in Figure 22 are used to map
the probability of having at least one geophysical anomaly with an analytic signal value above
5.0 nT/m within all decision cells across the site. The resulting estimated probability map is
shown in Figure 23. Probabilities range from 0.0 to 1.0 and can only be one of these two values
at the sample locations along the sample transects. At unsampled locations within the domain,
the probability value can range anywhere in the [0,1] range. The map in Figure 23 shows high
probability of at least one anomaly of interest in the center of the site as well as along the
northern boundary near the center of the site.

Relative to the map of maximum signal strength in Figure 21, the probability map in Figure 23
provides the basis for a probabilistic interpretation of the extent of the boundary of the target
area. The extent of the target boundary is determined by selecting an acceptable value of Ry and
then dating every point within the chosen Ry contour for detailed surveying.
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Figure 23. Probability of at least one geophysical anomaly with a signal strength greater than
5.0 nT/m across the site as estimated through indicator kriging.

Figure 24 shows example target boundaries for four different values of Rp. In addition, the
location of all anomalies of interest outside of the estimated target area are shown inred in
Figure 24. Thelocations of these anomalies of interest are known from the original geophysical
survey data collected by ORNL. Asthe design reliability increases, the characterization decision
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becomes more conservative and the size of the estimated target region increases to cover more of
the site. Thisincrease in size results in more of the anomalies of interest being contained within
the estimated target region, but also increases the amount of the site that must undergo a detailed
survey. These two results tend to decrease the number of false negative characterization
decisions and increase the number of false positive decisions, respectively.
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Figure 24. The estimated target boundaries (blue) for four different levels of Rp. The anomalies
of interest lying outside of the estimated target area are shown in red.

The results of the decisions made for all values of Ry between 0.7 and 1.0 are calculated and
shown in Figure 25. The image on the left side of Figure 25 shows the proportion of correct
decisions, false positive and false negative decisions as well as the proportion of the anomalies of
interest that are found as well as those that till remain. The decisions results are at the scale of
the decision cells (15x48) while the proportion of anomalies found and remaining are cal culated
for the individual anomalies. The right image of Figure 25 shows an expanded view of the lower
portion of the image on the left. From Figure 25, it can be seen that as the value of Rp increases,
the proportion of correct decisions decreases while the proportion of false positive decisions
increases. The proportion of false negatives decreases monotonically as a function of increasing
Rp and is 2 percent or lessfor all values of Ry shown. The false negatives define the proportion
of decision cells remaining that contain at least one anomaly of interest while the number of
anomalies |eft behind refers to the number of individual anomalies remaining. The reason that
the proportions of the false negatives and the anomalies of interest are not equal for agiven Rp,
isthat more than one anomaly of interest can remain in asingle decision cell.
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Figure 25. Proportions of decision results and anomalies of interest found and left behind for Ry
values between 0.70 and 1.00.

Application 2 Summary

This example application demonstrated the ability of geostatistical mapping techniques to
estimate a fourth attribute, maximum signal strength, from a limited number of equally
spaced parallel transects with a 15 foot width. These same data were also used to map the
probability of one anomaly of interest across the site and these results were used to map the
extent of the target area where the target areais defined by the locations of the anomalies of
interest. The results show (Figure 24) that this technique is able to efficiently identify the
outlines of the target without including large areas of the site without anomalies of interest
within the estimated target region. Additionally, the definition of the target acknowledges
the uncertainty inherent in making decisions across alarge site from limited information.
The decision maker determines the reliability that is necessary for the characterization
decision and this reliability defines the extent of the target areas. Asseenin Figure 24, this
approach is not limited to defining only a single target, but will define the individual extent
of multiple targets provided there are some sample data within those targets. Resultsfor this
example, show that fewer than three percent of the remaining decision cells contained
anomalies of interest for any value of Ry above 0.70.
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Application 3

The third example application builds on the first application by extending the estimates with
secondary information. The stratified approach to devel oping the secondary information has not
previously been applied to UXO site characterization problems and may prove extremely useful
because of its simplicity.

Incorporating Secondary Information

A distinct advantage of geostatistical approaches to estimating spatially distributed propertiesis
the flexibility with which these approaches can incorporate secondary information into the
estimation of the primary variable. These approaches include cokriging (Wackernagel, 1998;
Goovaerts, 1997), kriging with alocally varying mean (Deutsch and Journel, 1998), kriging with
an external drift (Journel and Huijbregts, 1978), collocated cokriging (Xu, et al., 1992; Almeida
and Journel, 1994) and stratified kriging (Stein et al., 1988; Stein, 1994). For the problem of
UXO site characterization, we would like to incorporate secondary information that is quantified
from an archival search report, or airborne imagery, with the primary data collected along sample
transects. Previous work on this project has investigated the use of cokriging, kriging with a
locally varying mean and collocated cokriging to integrate prior information with transect sample
data.

The choice of which approach to use to incorporate secondary information into kriging estimates
is based mainly on the character of this secondary datarelative to the primary data. Three
aspects of the secondary data must be considered: 1) the spatial extent of the secondary data; 2)
the units of measurement of the secondary data as compared to the units of the primary variable;
and 3) the number of secondary variables. The practical application of traditional cokriging
approaches is generally limited to the case where the secondary data are oversampled with
respect to the primary variable but are not available at all locations to be estimated. This
situation of the secondary data existing at the same locations as the primary data as well as at
additional locationsisthe “partialy heterotopic” case as defined by (Wackernagel, 1998). If the
secondary data are available at al estimation locations, then the spatial correlation of the
secondary variable will filter that of the primary variable under traditional cokriging.
Additionally, numerical instability in the solution of the cokriging system can occur (Goovaerts,
1997).

If the units of the secondary data match those of the primary variable, then kriging with alocally
varying mean is an excellent choice for dataintegration. Kriging with alocally varying mean
replaces the stationary mean in the simple kriging formulation (equation 8) with one that varies
gpatialy. The variation in thislocally varying mean must be smooth without sharp
discontinuities (Deutsch and Journel, 1998). Generally if the secondary data are obtained from a
geophysical sensor that locally averages the signals of the subsurface anomalies, then this
smoothly varying condition will be met. Kriging with atrend (KT) does not require that the
units of the primary and secondary data be the same. KT limits the trend model to two terms that
can be thought of as the value of the trend when the value of the primary datais equal to zero
and a scaled version of the secondary data. Asin the case of kriging with alocally variable
mean, the secondary data need to be smoothly varying. Collocated cokriging allows for the
incorporation of more than one secondary variable in the estimation of the primary variable.
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For the problems of UXO site characterization, secondary datathat exist at all locationsto be
estimated are of most interest. The utility of both kriging with alocally varying mean and
collocated cokriging with spatially exhaustive secondary information have been previously
examined for applications to UXO site characterization problems as part of this project (Saito et
al., 2002).

For this demonstration, we use a prior classification of the site into three strata as the secondary
information. Thistype of classification could readily be generated from archival search reports
available at many sites. This approach does not require any prior knowledge of the data or site
history within the strata, but only the geometric definition of portions of the site that may have
different histories. Estimation within strata proceeds as follows. The siteisdivided into a
number of strata and the mean value of the sample data lying within each stratum is calculated.
For every datalocation, the residual between the sampled value and the stratum mean are
calculated. These residuals are used to construct asingle residual variogram for the whole site
and the spatial estimation of the residuals is then completed across the site. For each location,
the estimated residual is added back to the corresponding stratum mean to get the final estimate
of the primary variable. Thistechnique is chosen becauseit iswell suited to information
contained in archival search reports. Previous applications of this stratum method for spatial
estimation include Stein (1994) and Stein et al. (1998). The use of prior information to ssimply
define different strata with assumed differences in anomaly/UXO intensity is perhaps the most
simple use of secondary datato aid in spatial estimation.

Based on the available historical information, the example hypothetical site is divided into three
strata defining the probability of UXO within each: Low, Medium and High. The spatial extent
of these three zones are shown schematically in Figure 26. These three zones are used to define
the secondary information for each of the three quantities being estimated: total number of
anomalies, number of anomalies of interest, and the probability of having at least one anomaly of
interest. It isnoted that it is not necessary to determine the actual values defining “low”,
“medium” and “high” but only to determine the spatial extent of the regions with presumed
similar behavior.
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Figure 26. Schematic representation of the hypothetical site with three different strata
representing: low (blue), medium (green) or high (red) suspected relative intensities of anomalies
based on historical data

The mean value of each quantity being estimated within each of the stratais calculated from the
sampling transects as they intersect the three different strata. These mean values and the total
number of 25x25 meter transect sample cells lying within each zone are shown in Table 6. An
inherent assumption in using the stratum approach to secondary datais that there are enough
samples available within each stratum to estimate a mean value that is representative of the true
distribution of anomalies within the stratum.

Table 6. Means of each quantity within the three different strata.

Total Anomalies Number of
Stratum Anomalies | of Interest | Indicator Samples
Low 1.357 0.066 0.057 457
Medium 1.966 0.291 0.217 175
High 4.149 1.473 0.77 74

Residual Variograms

Each sample value along the transect is subtracted from the corresponding stratum mean to
produce aresidual value. These residuals are then used to calculate and model residual
variograms. The residual variograms for each of the three attributes being modeled are shown in
Figure 27 and the parameters of the modelsfit to these residual variograms are given in Table 7.
For the residual values, the indicator variogram isfit with two nested models to better

52



approximate the experimental variogram data. These residual variograms show significantly
higher nugget effects and shorter ranges than the variograms cal culated on the raw sample data.
This behavior is expected as the residual s should represent the uncorrelated random variability
about the subtracted model. The small amount of spatial correlation remaining is due to the
model, the mean values within each zone, being an approximation and not a perfect description
of the sample data. This behavior iswhat would be expected for transect sampling at afield site.

Table 7. Variogram model parameters used to fit the variograms of the residuals.

Model Type Nugget Sill Range (m)
Total Anomalies Spherical 1.8 0.31 90
Number of Anomalies Spherical 0.25 0.117 40
>=3nT/m
Probability of one Spherical 0.058 0.016 30
anomaly >= 3 nT/m Exponential NA 0.022 350
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Estimation

The estimates of the residuals are shown in Figures 28, 29 and 30. The most notable difference
between these estimates and the estimates shown in Figures 14, 15 and 16 is that the area of
estimation issmaller. Thisis due to the shorter range values of the residua variograms relative
to the raw value variograms.

Theresidua values at any location, x, are calculated as:

residual (x) = stratum_mean(x) — data(x) (27)
therefore a positive residual means that the average within the stratum over estimates the actual
value at that location and a negative residual under estimates the actual value at that location.

The majority of the areas of estimated residuals shown in Figures 28, 29 and 30 have values near
0.0 meaning that at these locations the mean value of the stratum will prevail as the estimate.
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Figure 28. Estimated residual values for the total number of anomalies.
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Figure 29. Estimated residuals for the anomalies of interest.
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The estimated residual s are added back to the mean value of each property within each of the
zones defined as prior information. The final estimates are the sum of the estimated residuals
and the zone means. These final estimates are shown in Figures 31, 32 and 33. Aswas done for
the cross-validation and the estimation results in example application 1, the results of the
estimation are summarized in tables for the total number of anomalies and the number of
anomalies of interest and in agraph for the probability of at least one anomaly of interest.

The estimation results in Figures 31, 32 and 33 clearly show the locations of the different stratum
and the effect that the mean values in each stratum have on the resulting estimates. The
incorporation of the secondary information provided by using the strata allows for estimates at
all locations. However, for locations that are further away from a sample point than the range of
the residual variogram, the estimated value reverts to the stratum mean. This effect places
considerable importance on being able to determine representative mean stratum values from the
available transect data. For the “low” and “medium” strata, the mean values are 1.36 and 1.97
respectively. For locations that are beyond the variogram range from any sample point, these
means are used to make the estimate and any values corresponding to these means will then be
rounded up to the next highest integer, 2, prior to evaluating the results of the estimation through
jackknifing.

The jackknifing results for the estimation of the total number of anomalies are givenin Table 8.
Across al estimates, 22.3 percent are correct, 59.9 percent are false positive and 17.7 percent are
false negative. These results are within +/- one percent of the results obtained for the estimates
in the first example application with the major difference being that the use of the strata allows
for estimations across the entire site. The majority of the false positive estimates are where two
anomalies were estimated but there were zero or one actual anomaliesin those locations. These
false positives are a direct result of the mean valuesin the “low” and “medium” strata (Table 8)
and the decision to round each estimate up to the next highest integer value. All estimatesin
these two strata that are beyond the variogram range from the nearest sample point are estimated
as having two anomalies. However, the redlity isthat much of this area has only one, or no
anomalies at al and therefore alarge number of false positives are estimated. The majority of
the false negative results occur where two anomalies are estimated in the low and medium strata,
but three or four anomalies actually exist.

Table 8. Results of the estimation of the total number of anomalies using prior information as
determined through jackknifing.

0 1 2 3 4 5 6 7 8 9
0.000 | 0.000 | 0.000 { 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.004 | 0.006 | 0.007 [ 0.004 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000
0.237 1 0.314 | 0.212 [ 0.098 | 0.037 | 0.014 | 0.004 | 0.002 | 0.000 | 0.000
0.008 | 0.008 | 0.006 | 0.003 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.001 | 0.001 | 0.001 { 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000
0.001 | 0.003 | 0.005 [ 0.006 | 0.004 | 0.002 | 0.002 | 0.001 | 0.001 | 0.000
0.000 | 0.000 | 0.000 { 0.001 | 0.000 | 0.000 |{ 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
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Figure 31. Estimates of the total number of anomalies as created using prior information.

The results of the estimation of the number of anomalies of interest using the prior information
are shown in Figure 32 and Table 9. The effect of dividing the site into stratais clearly evident
in the map of estimatesin Figure 32. Across all 40,000 estimates, the correct estimates account
for 7.0 percent, the false positives account for 91.1 percent and the fal se negatives account for
just 1.9 percent. These results are within +/- four percent of the estimates made without using
the strata, but using the strata allows for estimates across the entire site. The large number of
false positives is due to the mean value estimated for the low and medium strata and the
conservative decision to round each estimate up to the next highest integer value. The means of
the low and medium strata are 0.07 and 0.29 respectively (Table 6) and for any location where
the stratum mean serves as the estimate, these values will both be rounded up to 1.0. These
means and the rounding up decision lead to alarge number of locations were one anomaly of
interest is estimated, but no anomalies of interest exist (Table 9). The larger percentage of false
positives resultsin alow percentage of false negative decisions. The majority of these false
negatives occur when one anomaly is estimated and two actually exist (Table 9).
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Figure 32. Estimates of the number of anomalies of interest as created using prior information.

Table 9. Results of the estimation of the number of anomalies of interest using prior information
as determined through jackknifing

0 1 2 3 4 5 6 7 8 9
0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.889 | 0.067 | 0.012 | 0.003 | 0.001 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.010 | 0.009 | 0.003 | 0.002 | 0.001 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.002 | 0.001 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 [ 0.000 | 0.000 [ 0.000 | 0.000 | 0.000 | 0.000 | 0.000
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Thefinal attribute to be estimated is the probability of having at least one anomaly of interest at
every location. Thisisdone using the variogram calculated on the residuals of the indicator data
and the discretization of the site into three strata. The results of the estimation are shown in
Figure 33 and the evaluation of these estimates using jackknifing is summarized across arange
of Rp valuesin Figure 33. Asseen in the estimation results for the other two attributes, the
segmentation of the site domain into strata has a strong effect on the final estimates. High
probabilities of at least one anomaly of interest occur mainly in the suspected target areain the
southwest portion of the site. The suspected target region in the northeast corner of the site has
probabilitiesin the 0.5 to 1.0 range.

Probability of One Anomaly of Interest
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Figure 33. Estimates of the probability of at least one anomaly of interest as created using prior
information.

The results of the decisions made at different levels of Ry (Figure 34) show a stepped behavior
that has not been seen in previous results (e.g., Figure 17). The discrete jumps or dropsin the
proportions of different decisions are the result of stratifying the site into three distinct zones.
For example near an Rp value of 0.95, there is alarge increase in the number of false positive
results and a corresponding decrease in the number of correct decisions. Below thislevel of Rp,
the “low” stratum is not slated for additional surveying, but at Ry values about approximately
0.95, it becomes necessary to do detailed surveying throughout the low stratum area. Detailed
surveys across the entire low area do find additional anomalies of interest (drop in false
negatives for Rp > 0.95 in Figure 34) but they are generally inefficient and the number of false
positives increases dramatically as thisregion is surveyed. The other jumpsin the curves
correspond with the values of Ry at which the high and medium strata are also slated for detailed
surveying.
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Figure 34. Proportions of different decision results based on the map in Figure 33 for arange of
Ro.

Application 3 Summary

This example application demonstrates a simple approach for incorporating prior information
into UX O site characterization activities. Results of dividing the site into strata based on

archival information allows for estimations across the entire site, but the majority of these
estimates are simply the stratum mean. The results of this example show that estimates can be
made across the entire site and the results are comparable to estimates that can only be made
across much smaller portions of the site when prior information is not used. Unfortunately, these
results only hold for the estimates of the total number of anomalies and the number of anomalies
of interest while the proportion of correct and false positive results based on the probability
estimates are degraded relative to results when the strata are not used.
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Application 4

The fourth exampl e application builds on the second application by examining two different
approaches to identifying the second iteration of sampling. These two approaches are: 1) take a
single meandering path transect within the regions of highest target boundary uncertainty as
defined using the initial sampling and probability indicator kriging; and 2) locate additional
straight, parallel transects in areas midway between the existing transects. The results of the
decisions are again compared to the underlying true values using a jackknifing procedure to
determine how well both cases of additional sampling did in improving the results.

Second-Phase Samples: Meandering Path

The first approach uses the results of using PIK on the original 14 transect samples to estimate
the probability of at least one anomaly of interest at every location (Figure 23). For these
examples, anomalies of interest are those above 5.0 nT/m and the locations with high probability
of these anomalies are believed to correspond to target locations. In the original probability map
(Figure 23), regions of maximum uncertainty correspond to areas with a probability near 0.50 of
having at least one anomaly of interest. For this example, the maximum uncertainty regions are
defined as those with probabilities between 0.4 and 0.6 and these are shown in Figure 35.
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Figure 35. Locations of maximum uncertainty in the presence or absence of an anomaly of
interst at the LagunaN11 site. The red regions contain cells with probabilities of at least one
anomaly of interest between 0.4 and 0.6.
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The areas shown in red in Figure 35 correspond to the areas in which the second round of
samples should be located to achieve the maximum reduction in uncertainty with respect to the
location of anomalies of interest. This entire high uncertainty region, including the area near the
northern boundary of the site is sampled with meandering path transects as shown along with the
original straight sampling transectsin Figure 36.

Additional sampling locations
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Figure 36. Original straight transects and the meandering path transect obtained in the second
round of sampling. Thelogl0 color scale shows the maximum analytic signal strength in nT/m
within each sample cell.
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The samples obtained by surveying this high uncertainty region show little spatial correlation
when transformed to the indicator [0,1] space. Thisresult is expected as these samples were
specifically located in an area with estimated probabilities of at |east one anomaly of interest
near 0.5. Given these estimates and the fact that a sample can only take the values 0.0 or 1.0, it
is expected that nearly every other sample cell would be a 1.0 with the other half of the sample
cells containing a0.0. Thisindependence from one cell to the next along the meandering path
creates a nugget effect variogram (i.e., no spatia correlation) and therefore the original indicator
variogram (Figure 22) as calculated off of the straight transectsis used in the PIK process to
create the updated estimates of the probability of at least one anomaly of interest. This updated
probability map is shown in Figure 37 and this map can be compared to Figure 23 to asses the
impact of the meandering path transect on the overall estimation of probabilities. The location of
the larger meandering path transect in Figure 36 is readily apparent near the center of Figure 37.
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Figure 37. Updated probability map showing the probability of at least one anomaly of interest
at every location. This map was updated from the original map by incorporating a meandering
path transect in the region of greatest uncertainty.

Second-Phase Samples: Straight Transects

A second approach to locating additional transectsisto locate a single straight transect midway
between the existing straight and parallel transects obtained in the initial round of sampling.
This approach would result in an increase in the probability of detecting atarget of agiven size,
or alarge decrease in the size of atarget areathat could be detected for the same level of
confidence used in theinitial transect design. This approach of “infilling” with additional
straight transects was applied to the Laguna N11 site and the transects resulting from the initial
and the second iteration of sampling are shown in Figure 38. The additional transects could not
be located exactly midway between the original transects for this example due to the gapsin the
origina field survey data, but they were located as close to midway between the existing
transects as possible.
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Figure 38. Straight and parallel sampling transects obtained in the original and second round of
sampling. Thelogl0 color scale shows the maximum analytic signal strength in nT/m within
each sample cell.

The additional transect data are transformed to the 0,1 indicator values based on whether or not
at least one anomaly of interest is found within each sample cell and the indicator variogram is
calculated and modeled using both the original and second-round sample data. Unlike the first
approach of locating a meandering path in the area of highest uncertainty, this second approach
of infilling additional straight transects across the entire site does not preferentially sample
regions with low spatial correlation. Therefore, the indicator variogram calculated using all the
sample data does display spatia correlation and can be used directly in the estimation of the
probability values for the updated probability map. The indicator variogram constructed using
all the straight transect data and the updated probability map created with this variogram and the
second round of straight transects are shown in Figures 39 and 40 respectively.

The variogram fit to the full set of indicator data has a nugget value of 0.015, and isfit with two
nested spherical variogram models having ranges of 400 and 2800 feet and sill values of 0.013
and 0.05. The variogram model fit to both sets of straight transect datais very similar to that fit
to the original transect data. This similarity indicates that the 14 original transects were adequate
to recover the spatial variation across the entire site.
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Figure 39. Updated indictor variogram calculated from the original and second round of straight
transects.
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Figure 40. Updated map showing the probability of at least one anomaly of interest everywhere
at the site based on the original and second round of straight transects.

66



Second-Phase Sampling Results

The final comparison between the two methods of |ocating second-phase samplesis done by
comparing the results of the site characterization decisions that would be made using the two
different probability maps (Figures 37 and 40). Thisis done in the same way asin the previous
example applications by making decisions for arange of Ry values and comparing the decisions
to the known data that were held back from the analysis and then reporting the proportions of the
different decision results. Also, the proportions of anomalies of interest found or left behind
using the different sampling designs are examined. These comparisons are shown in Figure 41.

The top graph in Figure 41 shows the proportion of the total anomalies that are found and that
are left behind as a function of the chosen Rp. These graphs are calculated using the actual
anomalies and their locations. Although the decisions are made at the 15x48 decision cell scale,
no aggregation of the true anomalies into the decisions cellsis considered in this top graph.
Therefore, if afalse negative decision is made for adecision cell and that cell contains 5
anomalies of interest, thiswill lead to 5 anomalies being left behind. The resultsin the top graph
of Figure 41 show that at levels of Ry >= 0.95, 93 percent or more of all anomalies of interest are
found and 7 percent or less are left behind. The sampling design that uses two sets of straight
transects produces the highest proportion of anomalies found across all values of Rp, although at
the highest values of Rp, thereislittle difference in the results when using just the original 14
transects or the original transects combined with either the meandering path or the 13 additional
straight transects.

The middle graph on Figure 41 shows the proportion of correct and false positive decisions made
asafunction of Rp for each of the three sampling designs. These results are calcul ated by
comparing the decisions made at the decision cell scale to the true decision that would be made
at the same decision cell scaleif the site were perfectly characterized. For these results, the
origina 14 transects combined with the meandering path give the highest proportion of correct
decisions and the lowest proportion of false positive decisions across values of R from 0.70 to
approximately 0.97. For design reliabilities above 0.97, the 14 original transects combined with
the 13 additional straight transects produce the highest proportions of correct decisions and the
lowest proportions of false positive decisions. However, the differences in the proportions of
correct and fal se positive decisions across the three different sampling designs are minimal for
all values of Ry considered. These resultsindicate that little improvement in the decisions
resulted from adding the second round of sampling. Thisresult istrue for either the meandering
path or the additional straight transect second-phase sampling designs.

The bottom image in Figure 41 shows the proportion of false negative decisions made for each of
the three different sampling designs across the full, 0.0 to 1.0, range of Ry values. Thislower
graph shows that the addition of second phase samples, either the single meandering path or
multiple straight transects, decreases the number of false negative decisions relative to just using
the original 14 straight transects. For different values of Rp, the second-phase sampling
approach that gives the lowest proportion of false negative results varies as a function of Ry. For
values of Ry greater than 0.95, the choice of sampling design is nearly inconsequential with
respect to the number of false negative decisions with the original sampling design and the two
second-phase designs all achieving afalse negative proportion of approximately 4.0E-03 or less.
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Another way to view the decision results for this example application is to map the extent of the
site that is slated for additional surveying versus that which isleft as requiring no further action.
These maps are compared for four different levels of Ry: 0.70, 0.80, 0.90 and 0.95 in Figure 42.
The results for the second iteration samples being obtained along thirteen straight transects are
shown on the left and the results obtained with a single meandering path as the second iteration
are shown in the right column. The two approaches are fundamentally different in that the
additional straight transects are designed to learn more about the entire site while the meandering
path is specifically designed to better resolve the extent of the target area. Asthe Ry increases,
the straight transect sampling results in more isolated areas outside the main target area being
scheduled for detailed surveying, while the results based on the additional meandering transect
generally produces changes in and around the main target areas. The lack of spatial correlation
in the samples along the meandering path transect limits the ability of these datato inform
nearby locations that were not sampled and thus limits the effect of these samples to the actual
sample locations.

Application 4 Summary

The major result of the fourth example application is that the original 14 transects provide
enough information to characterize the site and in particular, these transects provide enough data
to adequately define the boundaries of the target regions. The 13 additional transects, or the
meandering path transect, taken as a second-phase of sampling do not significantly alter the
results from those obtained with the original 14 transects. The different approaches to the
second-phase of sampling do define slightly different areas for additional surveying; however,
the decision results across the entire site are essentially identical.
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0.90 (second from bottom), 0.95 (bottom). The resultsin the left column are for the straight
transects. The right column has the results for the meandering path.
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Conclusions

This report has addressed one potential limitation in the spatial estimation procedure and has
provided a number of simple applications of different aspects of the site characterization
approach across four different examples. The results of the investigation into whether or not it is
necessary to correct the kriging procedure to account for the finite domain effect associated with
transect data has been answered. All results examined over multiple different transects, transect
widths and proportions of site sampling coverage show that there is no appreciable difference
between finite domain kriging and traditional ordinary kriging. Thereforeit is possible to make
accurate estimates from transect data using the readily available ordinary kriging agorithm.

In general all four example applications looked at sites where less than 10 percent of the was
sampled and the site characterization tools were able to produce decision results that limited the
number of false negativesto 5 percent or less. Significant differences in the amount of correct
and false positive decisions exist across the different attributes that are estimated and the
different approaches to decision making. The specific conclusions that can be drawn from each
of the example applications are:
1) The probability mapping approach provided superior decision making results when compared
to mapping the total number of anomalies or mapping the number of anomalies of interest.
To some extent this result was due to the decision to round up any fractional estimates of
number of anomalies to the next integer value in the two anomaly mapping approaches.
This decision creates artificially high levels of false positive results. However, mapping the
number of anomalies requires that some type of fairly arbitrary decision be made as to what
fraction of an estimated anomaly should be counted as afull anomaly. For thiswork, the
most conservative possible approach was taken. The probability mapping approach avoids
having to make the decision as to what fractional value needs to be counted as atrue
anomaly by requiring a decision on the acceptable reliability to which a site needs to be
characterized. The cross-validation step provided excellent predictions of the results that
were obtained in the actual estimations. This step can is generally used to compare different
variogram models and optionsin the setup of the kriging algorithm, but the results obtained
here demonstrate that cross-validation can also be used to gain confidence in the accuracy of
the estimates across a site using just the data that have already been collected.

2) This example application demonstrated the ability of geostatistical mapping techniques to
estimate a fourth attribute, maximum signal strength, from alimited number of equally
spaced parallel transects with a 15 foot width. These same data were also used to map the
probability of one anomaly of interest across the site and these results were used to map the
extent of the target area where the target areais defined by the locations of the anomalies of
interest. The results show that this technique is able to efficiently identify the outlines of the
target without including large areas of the site without anomalies of interest within the
estimated target region. Additionally, the definition of the target acknowledges the
uncertainty inherent in making decisions across a large site from limited information. The
decision maker determines the reliability that is necessary for the characterization decision
and thisreliability defines the extent of the target areas. This approach is not limited to
defining only a single target, but will define the individual extent of multiple targets provided
there are some sample data within those targets.
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3) This example application demonstrated the utility of a simple approach for incorporating
prior information into UXO site characterization activities. Results of dividing the siteinto
strata based on archival information alows for estimations across the entire site, but the
majority of these estimates are simply the stratum mean. The results of this example show
that estimates can be made across the entire site and the results are comparabl e to estimates
that can only be made across much smaller portions of the site when prior information is not
used. Theseresultsonly hold for the estimates of the total number of anomalies and the
number of anomalies of interest while the proportion of correct and false positive results
based on the probability estimates are degraded relative to results when the strata are not
used.

4) The major result of the fourth example application is that the original 14 transects provide
enough information to characterize the site and in particular, these transects provide enough
datato adequately define the boundaries of the target regions. The 13 additional transects, or
the meandering path transect, taken as a second-phase of sampling do not significantly alter
the results from those obtained with the original 14 transects. The different approaches to the
second-phase of sampling do define slightly different areas for additional surveying;
however, the decision results across the entire site are essentially identical.
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